Hard Ball Systems Are Fully Hyperbolic
نویسندگان
چکیده
We consider the system of N (≥ 2) elastically colliding hard balls with masses m1, . . . , mN , radius r, moving uniformly in the flat torus TL = R/L · Z , ν ≥ 2. It is proved here that the relevant Lyapunov exponents of the flow do not vanish for almost every (N + 1)-tuple (m1, . . . ,mN ;L) of the outer geometric parameters.
منابع مشابه
Metric and periodic lines in the Poincare ball model of hyperbolic geometry
In this paper, we prove that every metric line in the Poincare ball model of hyperbolic geometry is exactly a classical line of itself. We also proved nonexistence of periodic lines in the Poincare ball model of hyperbolic geometry.
متن کاملThe Boltzmann-Sinai ergodic hypothesis in two dimensions (without exceptional models
We consider the system of N (≥ 2) elastically colliding hard balls of masses m1, . . . , mN and radius r in the flat unit torus T , ν ≥ 2. In the case ν = 2 we prove (the full hyperbolicity and) the ergodicity of such systems for every selection (m1, . . . , mN ; r) of the external geometric parameters, without exceptional values. In higher dimensions, for hard ball systems in T (ν ≥ 3), we pro...
متن کاملHard Ball Systems Are Completely Hyperbolic
We consider the system of N (≥ 2) elastically colliding hard balls with masses m1, . . . , mN , radius r, moving uniformly in the flat torus T ν L = R /L · Z , ν ≥ 2. It is proved here that the relevant Lyapunov exponents of the flow do not vanish for almost every (N + 1)-tuple (m1, . . . , mN ;L) of the outer geometric parameters.
متن کاملImprovement of the Theorem on Local Ergodicity
We prove here that in the Theorem on Local Ergodicity for Semi-Dispersive Billiards (proved by N. I. Chernov and Ya. G. Sinai in 1987) the condition of the so called “Ansatz” can be dropped. That condition assumed that almost every singular phase point had a hyperbolic trajectory after the singularity. What is even more, it turns out that the recently added condition on the algebraicity of the ...
متن کاملUpgrading the Theorem on Local Ergodicity
We prove here that in the Theorem on Local Ergodicity for Semi-Dispersive Billiards (proved by N. I. Chernov and Ya. G. Sinai in 1987) the condition of the so called “Ansatz” can be dropped. That condition assumed that almost every singular phase point had a hyperbolic trajectory after the singularity. Having this condition dropped, the cited theorem becomes much stronger and easier to apply. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997